CBSE Sample Paper Maths Set - B Answer
 Class 7

Section-A

1. 7×11^{5}.
2. 4.
1. 3
2. 60°.
3. 70
4. 8 vertices.
5. 80°.
6. $-9 / 10$.

Section - B

9. Here, $A B=P R=3.5 \mathrm{~cm}$,
$B C=P Q=7.1 \mathrm{~cm}$
and $A C=Q R=5 \mathrm{~cm}$
So, by SSS congruence rule, we have $\Delta_{\mathrm{ABC}} \cong \mathrm{RPQ}$
10. By exterior angle property of a triangle we know,

Exterior angle = Sum of two interior opposite angles

$$
\begin{array}{ll}
\therefore 50^{\circ}+x=120^{\circ} \\
\text { or } & x=70^{\circ}
\end{array}
$$

Now, sum of the angles of a triangle $=180^{\circ}$
$\therefore 50^{\circ}+y+70^{\circ}=180^{\circ}$
$\Rightarrow \quad y=60^{\circ}$

cbse Sguess	

11. $104278=1 \times 100,000+0 \times 10,000+4 \times 1000+2 \times 100+7 \times 10+8 \times 1$

$$
\begin{aligned}
& =1 \times 10^{5}+0 \times 10^{4}+4 \times 10^{3}+2 \times 10^{2}+7 \times 10^{1}+8 \times 10^{0} \\
& =1 \times 10^{5}+4 \times 10^{3}+2 \times 10^{2}+7 \times 10^{1}+8 \times 10^{0}
\end{aligned}
$$

Or,

$$
\begin{aligned}
\frac{2 \times 3^{4} \times 2^{5}}{9 \times 4^{2}} & =\frac{2 \times 3^{4} \times 2^{5}}{3^{2} \times\left(2^{2}\right)^{2}} \\
& =\frac{2 \times 3^{4} \times 2^{5}}{3^{2} \times 2^{2 \times 2}} \\
& =\frac{3^{4} \times 2^{1+5}}{3^{2} \times 2^{4}} \\
& =\frac{3^{4} \times 2^{6}}{3^{2} \times 2^{4}} \\
& =2^{6-4} \times 3^{4-2} \\
& =2^{2} \times 3^{2} \\
& =4 \times 9 \\
& =36
\end{aligned}
$$

12. Steps of construction:
13. Draw $A B=4.8 \mathrm{~cm}$.
14. Using protractor, draw $\angle \mathrm{ABK}=70^{\circ}$
15. On the line segment $B K$, cut off $B C=5.2 \mathrm{~cm}$.
16. Join A and C.
Δ_{ABC} is the required triangle.

CBSE Sample Papers | CBSE Guess Papers | CBSE Practice Papers | Important Questions | CBSE PSA | CBSE OTBA | Proficiency Test | 10 Years Question Bank|CBSE Guide | CBSE Syllabus | Indian Tutors |

13. Total area of the four walls of a room $=2 h(l+b)$.

Here $\mathrm{I}=6 \mathrm{~m}, \mathrm{~b}=4.5 \mathrm{~m}$ and $\mathrm{h}=3 \mathrm{~m}$
Therefore,
Area of the walls $=2 \times 3 \mathrm{~m} \times(6 \mathrm{~m}+4.5 \mathrm{~m})$
$=6 \mathrm{~m} \times 10.5 \mathrm{~m}$
$=63 \mathrm{~m}^{2}$.
14. Additive inverse of $3 / 7=-3 / 7$ as $(3 / 7)+(-3 / 7)=0=(-3 / 7)+(3 / 7)$
and additive inverse of $-4 / 9=4 / 9$ as $(4 / 9)+(-4 / 9)=0=(-4 / 9)+(4 / 9)$

Section - C

15. In the two triangles AOC and BOD,
$\angle \mathrm{C}=\angle \mathrm{D}\left(\right.$ each $\left.70^{\circ}\right)$
Also, $\angle \mathrm{AOC}=\angle \mathrm{BOD}=30^{\circ}$ (vertically opposite angles)
So, $\angle \mathrm{A}$ of $\triangle_{\mathrm{AOC}}=180^{\circ}-\left(70^{\circ}+30^{\circ}\right)=80^{\circ} \quad$ (using angle sum property of a triangle)
Similarly, $\angle \mathrm{B}=80^{\circ}$
$A C=B D$ (each 3 unit)
So, by ASA congruence rule, $\triangle_{\text {AOC }} \cong \Delta_{\text {BOD }}$.
16. (i) The three pairs of equal parts are as follows:

$$
\begin{gathered}
\mathrm{AB}=\mathrm{AC} \quad \text { (Given) } \\
\angle \mathrm{BAD}=\angle \mathrm{CAD} \quad \begin{array}{c}
\text { (AD bisects }
\end{array} \angle_{\mathrm{BAC})} \\
\text { and } \mathrm{AD}=\mathrm{AD} \quad \text { (common) }
\end{gathered}
$$

(ii) Yes, $\triangle_{\mathrm{ADB}} \cong \triangle_{\mathrm{ADC}} \quad$ (By SAS congruence rule)
(iii) $\angle \mathrm{B}=\angle \mathrm{C} \quad$ (Corresponding parts of congruent triangles)
17. Vertically opposite angles are always equal

chasefors	

$\therefore y=90^{\circ}$
Now, sum of all the angles of a triangle $=180^{\circ}$

$$
\begin{array}{lr}
\therefore & x+x+90^{\circ}=180^{\circ} \\
\Rightarrow & 2 x=90^{\circ} \\
\Rightarrow & x=45^{\circ}
\end{array}
$$

18. Vertically opposite angles are always equal

$$
\therefore y=80^{\circ}
$$

Now, sum of all the angles of a triangle $=180^{\circ}$

$$
\begin{array}{cc}
\therefore & 50^{\circ}+x+80^{\circ}=180^{\circ} \\
\Rightarrow & x=50^{\circ}
\end{array}
$$

19. $16000=16 \times 1000=(2 \times 2 \times 2 \times 2) \times 1000$

$$
\begin{aligned}
& =2^{4} \times 10^{3} \quad(\text { as } 16=2 \times 2 \times 2 \times 2) \\
& =(2 \times 2 \times 2 \times 2) \times(2 \times 2 \times 2 \times 5 \times 5 \times 5)[\text { as } 10=2 \times 5] \\
& =(2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2) \times(5 \times 5 \times 5)
\end{aligned}
$$

Hence, $16000=2^{7} \times 5^{3}$.

Or,

chase	
CBSEGuess.com	

(i) $\frac{3^{2} \times 4^{5} \times \mathrm{x}^{4}}{3^{4} \times 4^{3} \times \mathrm{x}^{9}}=3^{(2-4)} \times 4^{(5-3)} \times \mathrm{x}^{(4-9)}$

$$
\begin{aligned}
& =3^{-2} \times 4^{2} \times \mathrm{X}^{-5} \\
& =\frac{4^{2}}{3^{2} \times \mathrm{x}^{5}}
\end{aligned}
$$

(ii) $\frac{4^{5} \times 9^{5} \times \mathrm{x}^{7}}{2^{3} \times 3^{6} \times \mathrm{x}^{5}}=\frac{\left(2^{2}\right)^{5} \times\left(3^{2}\right)^{5} \times \mathrm{x}^{7}}{2^{3} \times 3^{6} \times \mathrm{x}^{5}}$

$$
\begin{aligned}
& =\frac{2^{10} \times 3^{10} \times \mathrm{x}^{7}}{2^{3} \times 3^{6} \times \mathrm{x}^{5}} \\
& =2^{(10-3)} \times 3^{(10-6)} \times \mathrm{x}^{(7-5)} \\
& =2^{7} \times 3^{4} \times \mathrm{x}^{2}
\end{aligned}
$$

20.

$$
\begin{aligned}
\text { Length of each piece } & =\frac{\text { Total length }}{\text { Number of pieces }} \\
& =25 \frac{1}{2} \div 12 \\
& =\frac{51}{2} \times \frac{1}{12}=\frac{17}{8} \text { or } 2 \frac{1}{8} \mathrm{~m}
\end{aligned}
$$

21. Edge of one wooden cubical block $=12 \mathrm{~cm}$.

Its Volume $=(12)^{3}=12 \times 12 \times 12 \mathrm{~cm}^{3}$.

Edge of other block of wood $=3 \mathrm{~m}$ and $60 \mathrm{~cm}=360 \mathrm{~cm}$.
Its Volume $=(360)^{3}=360 \times 360 \times 360 \mathrm{~cm}^{3}$

Therefore required number of wooden cubical blocks $=\frac{360 \times 360 \times 360}{12 \times 12 \times 12}$
$=30 \times 30 \times 30=27,000$ blocks.

Or,

Surface area of a cuboid $=2[l b+l h+b h]$

Here I = 50 cm
$b=20 \mathrm{~cm}$

cbse	
gruess	CBSEGuess.com

and $\mathrm{h}=15 \mathrm{~cm}$

Therefore, surface area of the box

$$
\begin{aligned}
= & 2 \times[(50 \times 20)+(50 \times 15)+(20 \times 15)] \mathrm{cm}^{2} \\
& =2 \times[1000+750+300] \mathrm{cm}^{2} \\
& =2 \times 2050 \mathrm{~cm}^{2} \\
& =4100 \mathrm{~cm}^{2} .
\end{aligned}
$$

22.

Steps of construction:
a. Draw MN of length 3 cm .
b. At M, draw $M X \perp M N$. (L should be somewhere on this perpendicular)
c. With N as centre, draw an arc of radius 5 cm . (L must be on this arc, since it is at a distance of 5 cm from N).
d. L has to be on the perpendicular line $M X$ as well as on the arc drawn with centre N. Therefore, L is the meeting point of the arc and perpendicular.
$\triangle \mathrm{LMN}$ is now obtained.

23. (a) The order of rotational symmetry is 4.
(b) The order of rotational symmetry is 2.
(c) The order of rotational symmetry is 2.
24.

L.H.S
$a+b=\frac{3}{5}+\left(\frac{-2}{5}\right)$

$$
=\frac{3-2}{5}=\frac{1}{5}
$$

R.H.S
$b+a=\frac{-2}{5}+\frac{3}{5}$
$=\frac{-2+3}{5}=\frac{1}{5}$
Therefore, L.H.S = R.H.S

Section - D

25. (i)Draw a line $A B$. Take a point P on it and a point C outside this line. Join C to P.
(ii)Taking P as centre and with a convenient radius, draw an arc intersecting line $A B$ at point D and PC at point E .
(iii) Taking C as centre and with the same radius as before, draw an arc FG intersecting PC at H .
(iv) Adjust the compass up to the length of $D E$. Without changing the opening of the compass and taking H as the centre, draw an arc to intersect the previously drawn arc FG at point I.
(v) Join the points C and I to draw a line ' l '.

This is the required line that is parallel to line $A B$.
26.

Shape	Centre of Rotation	Order of Rotation	Angle of Rotation
Square	Intersection point of diagonals	4	$360^{\circ} / 4=90^{\circ}$

Rectangle	Intersection point of diagonals	2	$360^{\circ} / 2=180^{\circ}$
Rhombus	Intersection point of diagonals	2	$360^{\circ} / 2=180^{\circ}$
Circle	Centre of circle	Infinite	0°

27.

(i) $\frac{\left(6^{5}\right)^{3}}{6^{3}}=\frac{6^{15}}{6^{3}}$
$=6^{(15-3)}$
$=6^{12}$
(ii) $\left(90^{50}\right)^{3}=(90)^{50 \times 3}$

$$
=(90)^{150}
$$

(iii) $\left(5^{32}\right)^{5}=(5)^{32 \times 5}$

$$
=5^{160}
$$

(iv) $\left(2^{64}\right)^{5}=(2)^{64 \times 5}$

$$
=2^{320}
$$

28. Mayank reads a story book on first day $=1 / 3$ part He reads that story book on second day $=1 / 4$ part

Total story book read by Mayank $=1 / 3+1 / 4$
= 7/12 part
Story book left to be read = 1-7/12

$$
=5 / 12 \text { part }
$$

Thus, $5 / 12$ part of the book is left to be read.
29.

$A B C D$ is a quadrilateral, in which $A B=C D$ and $B C=A D . B D$ is a diagonal.
To Prove: $\triangle \mathrm{ABD} \cong \mathrm{DCDB}$
Proof: In $\triangle \mathrm{ABD}$ and DBCD ,
$A B=C D$ [Given]
$B C=D A$ [Given]
BD $=\mathrm{DB}$ [Common]
So,

$$
\Delta_{\mathrm{ABD}} \cong \Delta_{\mathrm{CDB}} \quad(\mathrm{By} \text { SSS })
$$

Congruent parts are
$\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$
$\mathrm{BD}=\mathrm{DB}$
and $\quad \angle \mathrm{A}=\angle \mathrm{C}$

Or,

In PSR and PQR,
$\angle \mathrm{SPR}=\angle \mathrm{QRP}$ [Given]
$\angle_{\mathrm{RSP}}=\angle \mathrm{PQR}$ [Given]
PR = PR (Common)
$\therefore \triangle_{\mathrm{PSR}} \cong \triangle_{\mathrm{PQR}}$ (By ASA rule)
$\therefore \quad P Q=R S \quad(B y C P C T)$

chase	
gruess	CBSEGuess.com

30.


```
In \(\triangle_{\text {ACD }}\) and \(\triangle_{\text {ACB }}\)
    \(A D=A B \quad\) [Given]
    \(\angle \mathrm{DAC}=\angle \mathrm{BAC} \quad\) [Given]
    AC = CA [Common]
    \(\triangle_{\mathrm{ACD}} \cong \triangle_{\mathrm{ACB}} \quad[\mathrm{By} \mathrm{SAS}]\)
therefore, \(\mathrm{DC}=\mathrm{BC} \quad[\mathrm{By} \mathrm{CPCT}]\)
```

31. Let $A C$ be the tree that is broken at point $C, 12 \mathrm{~m}$ above the ground. Its broken top meets the earth at point D. Point D is 5 m away from the base of the tree.

In triangle $B C D$,

$$
\angle \mathrm{BCD}=90^{\circ}
$$

chase	
CBSEGuess.com	

Using Pythagoras Theorem

$$
\begin{aligned}
B D^{2} & =C D^{2}+B C^{2} \\
& =(5)^{2}+(12)^{2} \\
= & 25+144 \\
& =169 \\
B D & =13 \mathrm{~m}
\end{aligned}
$$

So, the length of tree $A C=A B+B C$

$$
\begin{aligned}
& =B D+B C \quad[A B=B D] \\
& =13+12 \\
& =25 \mathrm{~m}
\end{aligned}
$$

Thus, height of tree is 25 m .

Or,

Given: Let $A B$ be a ventilator at height of 12 m and $A C$ be a ladder of length 13 m .
To Find: Distance of foot of ladder from wall.

Solution:

In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=90^{\circ}$

By Pythagoras Theorem, we have

$$
\begin{aligned}
A C^{2} & =A B^{2}+B C^{2} \\
(13)^{2} & =(12)^{2}+B C^{2} \\
B C^{2} & =169-25 \\
& =144 \\
B C & =12 \mathrm{~m}
\end{aligned}
$$

Thus, the distance of foot of ladder from wall is 12 m .
32.

	Cube	Pyramid(Triangular)	Prism	Brick
Faces	6	4	5	6
Edges	12	6	9	12
Vertices	8	4	6	8

chasefors	CBSEGuess.com

33. The figures of cross-sections obtained by cutting vertically the following shapes are given below:

(ii)Cylinder

(iii)Prism

(ii)Sphere

(iv)Cone
34.

Given: In triangle PQR, PS is a median.
To Prove: $P Q+Q R+R P>2 P S$
Proof:

In triangle PQS,

CBSE Sample Papers | CBSE Guess Papers \| CBSE Practice Papers | Important Questions | CBSE PSA | CBSE OTBA | Proficiency Test | 10 Years Question Bank|CBSE Guide \| CBSE Syllabus | Indian Tutors | Teacher' Jobs CBSE eBooks | Schools | Alumni | CBSE Results | CBSE Datesheet | CBSE News

chase	
gruess	CBSEGuess.com

> PQ + QS > PS ... (1) (Since sum of two sides is greater than third side in a triangle.)

In triangle PRS,

> PR + RS > PS ... (2) (Since sum of two sides is greater
> than third side in a triangle.)

Adding relation (1) and (2), we get

$$
\begin{aligned}
& P Q+Q S+P R+R S>2 P S \\
& \quad P Q+Q R+P R>2 P S \quad[\text { since, } Q S+S R=Q R]
\end{aligned}
$$

