

CBSE Sample Paper Maths Set – B Answer Class 7

Section-A

- **1.** 7×11^5 .
- **2.** 4.
- **3.** 3
- **4.** 60°.
- **5.** 70
- 6. 8 vertices.
- **7.** 80°.
- **8.** -9/10.

Section - B

- 9. Here, AB = PR = 3.5 cm, BC = PQ = 7.1 cmand AC = QR = 5 cmSo, by SSS congruence rule, we have $\Delta ABC \cong RPQ$
- **10.** By exterior angle property of a triangle we know,

Exterior angle = Sum of two interior opposite angles \cdot

$$\cdot \cdot 50^{-} + x = 120^{-}$$

or $x = 70^{\circ}$

Now, sum of the angles of a triangle = 180 $^{\circ}$

 $\therefore 50^{\circ} + y + 70^{\circ} = 180^{\circ}$ $\Rightarrow \qquad y = 60^{\circ}$

CBSE Sample Papers
 CBSE Guess Papers
 CBSE Practice Papers
 Important Questions
 CBSE PSA

 CBSE OTBA
 Proficiency Test
 10 Years Question Bank
 CBSE Guide
 CBSE Syllabus
 Indian Tutors

 Teacher' Jobs
 CBSE eBooks
 Schools
 Alumni
 CBSE Results
 CBSE Datesheet
 CBSE News

11. $104278 = 1 \times 100,000 + 0 \times 10,000 + 4 \times 1000 + 2 \times 100 + 7 \times 10 + 8 \times 1$

$$= 1 \times 10^{5} + 0 \times 10^{4} + 4 \times 10^{3} + 2 \times 10^{2} + 7 \times 10^{1} + 8 \times 10^{0}$$

 $= 1 \times 10^{5} + 4 \times 10^{3} + 2 \times 10^{2} + 7 \times 10^{1} + 8 \times 10^{0}$

Or,

$$\frac{2 \times 3^4 \times 2^5}{9 \times 4^2} = \frac{2 \times 3^4 \times 2^5}{3^2 \times (2^2)^2}$$
$$= \frac{2 \times 3^4 \times 2^5}{3^2 \times 2^{2\times 2}}$$
$$= \frac{3^4 \times 2^{1+5}}{3^2 \times 2^4}$$
$$= \frac{3^4 \times 2^6}{3^2 \times 2^4}$$
$$= 2^{6-4} \times 3^{4-2}$$
$$= 2^2 \times 3^2$$
$$= 4 \times 9$$
$$= 36$$

12. Steps of construction:

- 1. Draw AB = 4.8cm.
- 2. Using protractor, draw $\angle ABK = 70^{\circ}$
- 3. On the line segment BK, cut off BC = 5.2cm.
- 4. Join A and C.

 $\Delta_{\rm ABC}$ is the required triangle.

- **13.** Total area of the four walls of a room = 2h(l + b). Here l = 6 m, b = 4.5 m and h = 3 m Therefore, Area of the walls = $2 \times 3 \text{ m} \times (6 \text{ m} + 4.5 \text{ m})$ = $6 \text{ m} \times 10.5 \text{ m}$ = 63 m^2 .
- **14.** Additive inverse of 3/7 = -3/7 as (3/7) + (-3/7) = 0 = (-3/7) + (3/7)and additive inverse of -4/9 = 4/9 as (4/9) + (-4/9) = 0 = (-4/9) + (4/9)

Section - C

15. In the two triangles AOC and BOD,

 $\angle C = \angle D$ (each 70°) Also, $\angle AOC = \angle BOD = 30^{\circ}$ (vertically opposite angles) So, $\angle A$ of $\triangle AOC = 180^{\circ} - (70^{\circ} + 30^{\circ}) = 80^{\circ}$ (using angle sum property of a triangle) Similarly, $\angle B = 80^{\circ}$ AC = BD (each 3 unit) So, by ASA congruence rule, $\triangle AOC \cong \triangle BOD$.

16. (i) The three pairs of equal parts are as follows:

 $AB = AC \qquad (Given)$ $\angle BAD = \angle CAD \qquad (AD bisects \angle BAC)$ and $AD = AD \qquad (common)$

(ii) Yes, $\Delta_{\mathsf{ADB}}\cong\Delta_{\mathsf{ADC}}$ (By SAS congruence rule)

(iii) $\angle B = \angle C$ (Corresponding parts of congruent triangles)

17. Vertically opposite angles are always equal

<u>CBSE Sample Papers</u> | <u>CBSE Guess Papers</u> | <u>CBSE Practice Papers</u> | <u>Important Questions</u> | <u>CBSE PSA</u> | <u>CBSE OTBA</u> | <u>Proficiency Test</u> | <u>10 Years Question Bank</u> | **CBSE Guide** | <u>CBSE Syllabus</u> | <u>Indian Tutors</u> | <u>Teacher' Jobs</u> <u>CBSE eBooks</u> | <u>Schools</u> | <u>Alumni</u> | <u>CBSE Results</u> | <u>CBSE Datesheet</u> | <u>CBSE News</u>

 $\therefore y = 90^{\circ}$ Now, sum of all the angles of a triangle = 180° $\therefore x + x + 90^{\circ} = 180^{\circ}$ $\Rightarrow 2x = 90^{\circ}$ $\Rightarrow x = 45^{\circ}$

cbse - guess

18. Vertically opposite angles are always equal $\therefore y = 80^{\circ}$

Now, sum of all the angles of a triangle = 180° $\therefore 50^{\circ} + x + 80^{\circ} = 180^{\circ}$ $\Rightarrow x = 50^{\circ}$

19. $16000 = 16 \times 1000 = (2 \times 2 \times 2 \times 2) \times 1000$ = $2^{4} \times 10^{3}$ (as $16 = 2 \times 2 \times 2 \times 2$) = $(2 \times 2 \times 2 \times 2) \times (2 \times 2 \times 2 \times 5 \times 5 \times 5)$ [as $10 = 2 \times 5$] = $(2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2) \times (5 \times 5 \times 5)$

Hence, $16000 = 2^7 \times 5^3$.

Or,

<u>CBSE Sample Papers</u> | <u>CBSE Guess Papers</u> | <u>CBSE Practice Papers</u> | <u>Important Questions</u> | <u>CBSE PSA</u> | <u>CBSE OTBA</u> | <u>Proficiency Test</u> | <u>10 Years Question Bank</u> | <u>CBSE Guide</u> | <u>CBSE Syllabus</u> | <u>Indian Tutors</u> | <u>Teacher' Jobs</u> <u>CBSE eBooks</u> | <u>Schools</u> | <u>Alumni</u> | <u>CBSE Results</u> | <u>CBSE Datesheet</u> | <u>CBSE News</u>

CBSEGuess.com

(i)
$$\frac{3^{2} \times 4^{5} \times x^{4}}{3^{4} \times 4^{3} \times x^{9}} = 3^{(2-4)} \times 4^{(5-3)} \times x^{(4-9)}$$
$$= 3^{-2} \times 4^{2} \times x^{-5}$$
$$= \frac{4^{2}}{3^{2} \times x^{5}}$$
(ii)
$$\frac{4^{5} \times 9^{5} \times x^{7}}{2^{3} \times 3^{6} \times x^{5}} = \frac{(2^{2})^{5} \times (3^{2})^{5} \times x^{7}}{2^{3} \times 3^{6} \times x^{5}}$$
$$= \frac{2^{10} \times 3^{10} \times x^{7}}{2^{3} \times 3^{6} \times x^{5}}$$
$$= 2^{(10-3)} \times 3^{(10-6)} \times x^{(7-5)}$$
$$= 2^{7} \times 3^{4} \times x^{2}$$

20.

Length of each piece =
$$\frac{\text{Total length}}{\text{Number of pieces}}$$

= $25\frac{1}{2} \div 12$
= $\frac{51}{2} \times \frac{1}{12} = \frac{17}{8} \text{ or } 2\frac{1}{8}$

21. Edge of one wooden cubical block = 12cm. Its Volume = $(12)^3 = 12 \times 12 \times 12$ cm³.

Edge of other block of wood = 3 m and 60 cm = 360 cm. Its Volume = $(360)^3 = 360 \times 360 \times 360 \text{ cm}^3$

Therefore required number of wooden cubical blocks = $\frac{360 \times 360 \times 360}{12 \times 12 \times 12}$

m

= $30 \times 30 \times 30 = 27,000$ blocks.

Or,

Surface area of a cuboid = 2[lb + lh + bh]

Here I = 50 cm

b = 20 cm

CBSE Sample Papers
 | CBSE Guess Papers
 | CBSE Practice Papers
 | Important Questions
 | CBSE PSA |

 CBSE OTBA
 | Proficiency Test
 | 10 Years Question Bank
 | CBSE Guide
 | CBSE Syllabus
 | Indian Tutors

 Teacher' Jobs
 CBSE eBooks
 | Schools
 | Alumni
 | CBSE Results
 | CBSE Datesheet
 | CBSE News

and h = 15 cm

Therefore, surface area of the box = $2 \times [(50 \times 20) + (50 \times 15) + (20 \times 15)]$ cm²

= 2 \times [1000 + 750 +300] cm²

= $2 \times 2050 \text{ cm}^2$ = 4100 cm².

22.

Steps of construction:

a. Draw MN of length 3 cm.

b. At M, draw MX \perp MN. (L should be somewhere on this perpendicular)

c. With N as centre, draw an arc of radius 5cm. (L must be on this arc, since it is at a distance of 5cm from N).

d. L has to be on the perpendicular line MX as well as on the arc drawn with centre N. Therefore, L is the meeting point of the arc and perpendicular.

- 23. (a) The order of rotational symmetry is 4.
 - (b) The order of rotational symmetry is 2.
 - (c) The order of rotational symmetry is 2.

24.

L.H.S $a + b = \frac{3}{5} + \left(\frac{-2}{5}\right)$ $= \frac{3-2}{5} = \frac{1}{5}$ R.H.S $b + a = \frac{-2}{5} + \frac{3}{5}$ $= \frac{-2+3}{5} = \frac{1}{5}$ Therefore, L.H.S = R.H.S

Section - D

25. (i)Draw a line AB. Take a point P on it and a point C outside this line. Join C to P.(ii)Taking P as centre and with a convenient radius, draw an arc intersecting line AB at point D and PC at point E.

(iii) Taking C as centre and with the same radius as before, draw an arc FG intersecting PC at H.

(iv) Adjust the compass up to the length of DE. Without changing the opening of the compass and taking H as the centre, draw an arc to intersect the previously drawn arc FG at point I.

(v) Join the points C and I to draw a line 'I'.

This is the required line that is parallel to line AB.

26.

Shape	Centre of Rotation	Order of Rotation	Angle of Rotation
Square	Intersection point of	4	360°/4 =90°
	diagonals		

CBSEGuess.com

Rectangle	Intersection point of diagonals	2	360°/2 = 180°
Rhombus	Intersection point of diagonals	2	360°/2 = 180°
Circle	Centre of circle	Infinite	0°

27.

$$(i) \frac{(6^{5})^{3}}{6^{3}} = \frac{6^{15}}{6^{3}}$$
$$= 6^{(15-3)}$$
$$= 6^{12}$$
$$(ii) (90^{50})^{3} = (90)^{50\times3}$$
$$= (90)^{150}$$
$$(iii) (5^{32})^{5} = (5)^{32\times5}$$
$$= 5^{160}$$
$$(iv) (2^{64})^{5} = (2)^{64\times5}$$
$$= 2^{320}$$

28. Mayank reads a story book on first day = 1/3 part He reads that story book on second day = 1/4 part Total story book read by Mayank = 1/3 + 1/4= 7/12 part Story book left to be read = 1 - 7/12

= 5/12 part

Thus, 5/12 part of the book is left to be read.

29.

CBSEGuess.com

ABCD is a quadrilateral, in which AB = CD and BC = AD. BD is a diagonal. To Prove: $\Delta_{ABD} \cong \mathsf{DCDB}$ **Proof:** In Δ_{ABD} and DBCD, AB = CD [Given] BC = DA [Given] BD = DB [Common] $\Delta_{\mathsf{ABD}} \cong \Delta_{\mathsf{CDB}}$ (By SSS) So, Congruent parts are AB = CDBC = DABD = DB $\angle A = \angle C$ and Or, R S P Q In PSR and PQR, \angle SPR = \angle QRP [Given] $\angle RSP = \angle PQR$ [Given] PR = PR (Common) $\therefore \Delta_{\mathsf{PSR}} \cong \Delta_{\mathsf{PQR}}$ (By ASA rule) \therefore PQ = RS (By CPCT)

30.

In $\triangle_{ACD and} \triangle_{ACB}$ AD = AB [Given] $\angle_{DAC} = \angle_{BAC}$ [Given] AC = CA [Common] $\triangle_{ACD} \cong \triangle_{ACB}$ [By SAS] therefore, DC = BC [By CPCT]

31. Let AC be the tree that is broken at point C, 12 m above the ground. Its broken top meets the earth at point D. Point D is 5 m away from the base of the tree.

In triangle BCD,

 \angle BCD = 90°

Or,

Given: Let AB be a ventilator at height of 12 m and AC be a ladder of length 13 m.

To Find: Distance of foot of ladder from wall.

Solution:

By Pythagoras Theorem, we have

$$AC2 = AB2 + BC2$$

(13)² = (12)² + BC²
BC² = 169 - 25
= 144
BC = 12 m

Thus, the distance of foot of ladder from wall is 12 m.

	Cube	Pyramid(Triangular)	Prism	Brick
Faces	6	4	5	6
Edges	12	6	9	12
Vertices	8	4	6	8

33. The figures of cross-sections obtained by cutting vertically the following shapes are given below:

(iii)Prism

34.

PQ + QS > PS ... (1) (Since sum of two sides is greater than third side in a triangle.)
In triangle PRS,
PR + RS > PS ... (2) (Since sum of two sides is greater than third side in a triangle.)
Adding relation (1) and (2), we get
PQ + QS + PR + RS > 2PS

PQ + QR + PR > 2PS [Since, QS + SR = QR]